Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xin-Hong Chang

Department of Chemistry, Luoyang Teacher's College, Luoyang 471022, People's Republic of China

Correspondence e-mail:
xinhong_chang2006@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.042$
$w R$ factor $=0.101$
Data-to-parameter ratio $=12.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
An orthorhombic polymorph of (p-nitrophenyl)ferrocene

The crystal structure of a new polymorph of (p-nitrophenyl)ferrocene, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{NO}_{2}\right)\right]$, has been determined at room temperature. The bond lengths and angles in the molecule are normal. The crystal structure is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and van der Waals forces.

Comment

Compounds containing ferrocene building blocks have been widely studied owing to their potential in, for example, catalysis, materials science, molecular devices and hydrometallurgy (Hayashi et al., 1989; Slone et al., 1997). The structure of a monoclinic polymorph (II) of (p-nitrophenyl)ferrocene was originally refined (Roberts et al., 1988) from two-circle diffractometer data without an absorption correction to a rather high $R_{\text {observed }}$ value of 0.079 . This structure was later redetermined by Gallagher et al. (1997) using four-circle diffractometer data, collected at room temperature, giving a significantly more precise structure. In this paper, we report the crystal structure of a new orthorhombic polymorph, (I), of (p-nitrophenyl)ferrocene.

(I)

The molecular structure of (I) is shown in Fig. 1. All bond lengths and angles are normal (Allen et al., 1987). Selected torsion angles are given in Table 1. The $\mathrm{Fe} \cdots \mathrm{Cg} 1$ and $\mathrm{Fe} \cdots \mathrm{Cg} 2$ distances are 1.652 (2) and 1.644 (3) Å, respectively, where $C g 1$ and $C g 2$ are the centroids of rings $\mathrm{C} 1-\mathrm{C} 5$ and C6C 10 , respectively. The $C g 1 \cdots \mathrm{Fe} \cdots C g 2$ angle is 178.5 (3) ${ }^{\circ}$. The dihedral angles formed between the C6-C10 mean plane and planes $\mathrm{C} 1-\mathrm{C} 5$ and $\mathrm{C} 11-\mathrm{C} 16 / \mathrm{N} 1 / \mathrm{O} 1 / \mathrm{O} 2$ are 1.55 (2) and $14.66(3)^{\circ}$, respectively. In the crystal structure, intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) link molecules into ladders along the [010] direction (Fig. 2).

Experimental

The title compound was synthesized by the reaction of ferrocene $(0.01 \mathrm{~mol})$ with a freshly diazotized solution of 4-nitroaniline $(0.01 \mathrm{~mol})$ in dilute sulfuric acid $(15 \mathrm{ml})$, followed by chromatography on alumina using dichloromethane and petroleum ether ($1: 1 \mathrm{v} / \mathrm{v}$) as

Received 15 November 2006
Accepted 21 November 2006
eluent. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an ethyl acetate and dichloromethane ($1: 1 \mathrm{v} / \mathrm{v}$) solution at room temperature over a period of one week.

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{NO}_{2}\right)\right]$	$Z=8$
$M_{r}=307.12$	$D_{x}=1.549 \mathrm{Mg} \mathrm{m}^{-3}$
Orthorhombic, $P b c a$	Mo $K \alpha$ radiation
$a=10.416(2) \AA$	$\mu=1.14 \mathrm{~mm}^{-1}$
$b=7.6525(14) \AA$	$T=298(2) \mathrm{K}$
$c=33.053(6) \AA$	Block, red
$V=2634.6(8) \AA^{3}$	$0.49 \times 0.46 \times 0.38 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.586, T_{\text {max }}=0.650$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.101$
$S=1.18$
2314 reflections
182 parameters
H-atom parameters constrained

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 11-\mathrm{C} 12$	$-18.3(5)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 11-\mathrm{C} 16$	$-15.4(4)$

Table 2
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\mathrm{i}}$	0.98	2.54	$3.451(5)$	155
Symmetry code: (i) $-x+2, y+\frac{1}{2},-z+\frac{3}{2}$				

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.98 \AA$, and refined using a riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 1999); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figure 1
The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.

Figure 2
Part of the crystal structure of (I), viewed approximately along the a axis. Hydrogen bonds are shown as dashed lines.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Gallagher, J. F., Ferguson, G., Ahmed, S. Z., Glidewell, C. \& Lewis, A. (1997). Acta Cryst. C53, 1772-1775.
Hayashi, T., Yamamoto, A., Ito, Y., Nishioka, E., Miura, H. \& Yanagi, K. (1989). J. Am. Chem. Soc. 111, 6301-6311.

Roberts, R. M. G., Silver, J., Yamin, B. M., Drew, M. G. B. \& Eberhardt, U. (1988). Chem. Commun. pp. 1549-1550.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Slone, C. S., Mirkin, C. A., Yap, G. P. A., Guzei, I. A. \& Rheingold, A. L. (1997). J. Am. Chem. Soc. 119, 10743-10753.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

